

    
      
          
            
  


Welcome to AIkit’s documentation!

aikit stands for Artificial Intelligent tool Kit and provides method to facilitate and accelerate the DataScientist job.

The optic is to provide tools to ease the repetitive part of the DataScientist job and so that he/she can focus on modelization.
This package is still in alpha and more features will be added.

This library is intended for the user who knows machine learning, knows python its data-science environnement (sklearn, numpy, pandas, …) but doesn’t want to spend too much time thinking about python technicallities in order to focus more on modelling.
The idea is to automatize or at least accelerate parts of the DataScientist job so that he/she can focus on what he/she does best.
The more time spend on coding the less time spent on asking the rights questions and solving the problems.
It will also help to really use model in production and not just play with them.


	The library is usefull if you ever asked yourself that type of questions :

	
	How do I handle different type of data ?


	I don’t remember how to concatenate sparse array and dataframe ?


	How can I retrieve the name of my features now that everything is a numpy array ?


	I’d like to use sklearn but my data is in a DataFrame with strings object and I don’t want to use 2 transformers just to encode the categorical features ?


	How do I deal with Data with several types like text, number and categorical data ?


	How can I quickly test models to see what work and what doesn’t ?


	…






	Here a quick summary of what is provided:

	
	additional sklearn-like transformers to facilitate operations (categories encoding, missing value handling, text encoding, …) : Transformer


	an extension of sklearn Pipeline that handle generic composition of transformations : GraphPipeline


	a framework to automatically test machine learning models : Auto ML Overview


	helper functions to accelerate the day-to-day


	…
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Installation

Using pip:

pip install aikit





In order to use the full functionnalities of aikit you can also install additionnal packages :



	graphviz : to have a nice representation of the graph of models


	lightgbm : to use lightgbm in the auto-ml


	nltk and gensim : to have advanced text encoder


	nltk corpus to clean text







To install everything you can do the following:

pip install lightgbm
pip install gensim
pip install nltk
python -m nltk.downloader punkt
python -m nltk.downloader stopwords
conda install graphviz









          

      

      

    

  

    
      
          
            
  


Getting Started

This notebook will show you how to built a complexe pipeline using aikit and how to crossvalidated it


[3]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)
Xtrain.head(10)








[3]:
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Getting Started

This notebook will show you how to built a complexe pipeline using aikit and how to crossvalidated it


[3]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)
Xtrain.head(10)








[3]:
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GraphPipeline getting started

This notebook is here to show a few things that can be done by the package.

It doesn’t means that these are the things you should do on that particular dataset.

Let’s load titanic dataset to test a few things


[1]:






import warnings
warnings.filterwarnings('ignore') # to remove gensim warning








[2]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)








[3]:






Xtrain.head(20)








[3]:
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How to load a model from a json

This notebook shows how to save the definition into a json object and reload it to be trained


[1]:






import warnings
warnings.filterwarnings('ignore') # to remove gensim warning








[2]:






from aikit.model_definition import sklearn_model_from_param













Matplotlib won't work






The idea is to be able to define a model by its name and its parameters. The overral syntax is :

(ModelName , {hyperparameters})


Example : this is a RandomForestClassifier


[3]:






rf_json = ("RandomForestClassifier",{"n_estimators":100})
rf_json








[3]:







('RandomForestClassifier', {'n_estimators': 100})






… which you can create using ‘sklearn_model_from_param’


[4]:






rf = sklearn_model_from_param(rf_json)
rf








[4]:







RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                       max_depth=None, max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=100,
                       n_jobs=None, oob_score=False, random_state=None,
                       verbose=0, warm_start=False)






The idea is simple :


	sklearn model that klass(**kwargs)


	corresponds to 2-uple : ‘klass’,kwargs







You can create more complexe model, like GraphPipeline


[5]:






json_enc = ("NumericalEncoder",{"columns_to_use": ["BLOCK" + "NUMBERTOKEN","DATETOKEN","CURRENCYTOKEN"]})
json_vec = ("CountVectorizerWrapper",{"analyzer":"char","ngram_range":(1,4),"columns_to_use":["STRINGLINE"]})
json_rf  = ("RandomForestClassifier",{"n_estimators":500})
json_des = ("GraphPipeline",{"models":{"encoder":json_enc,
                                       "vect":json_vec,
                                       "rf":json_rf},
            "edges":[("encoder","rf"),("vect","rf")]})
json_des








[5]:







('GraphPipeline',
 {'models': {'encoder': ('NumericalEncoder',
    {'columns_to_use': ['BLOCKNUMBERTOKEN', 'DATETOKEN', 'CURRENCYTOKEN']}),
   'vect': ('CountVectorizerWrapper',
    {'analyzer': 'char',
     'ngram_range': (1, 4),
     'columns_to_use': ['STRINGLINE']}),
   'rf': ('RandomForestClassifier', {'n_estimators': 500})},
  'edges': [('encoder', 'rf'), ('vect', 'rf')]})






… and again you can convert it to a real model :


[6]:






gpipe = sklearn_model_from_param(json_des)
gpipe
gpipe.graphviz








[6]:






[image: ../_images/notebooks_ModelJson_12_0.svg]




[7]:






gpipe.models["encoder"]








[7]:







NumericalEncoder(columns_to_use=['BLOCKNUMBERTOKEN', 'DATETOKEN',
                                 'CURRENCYTOKEN'],
                 desired_output_type='DataFrame', drop_unused_columns=False,
                 drop_used_columns=True, encoding_type='dummy',
                 max_cum_proba=0.95, max_modalities_number=100,
                 max_na_percentage=0.05, min_modalities_number=20,
                 min_nb_observations=10, regex_match=False)







[8]:






gpipe.models["rf"]








[8]:







RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
                       max_depth=None, max_features='auto', max_leaf_nodes=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=500,
                       n_jobs=None, oob_score=False, random_state=None,
                       verbose=0, warm_start=False)







[9]:






gpipe.models["vect"]








[9]:







CountVectorizerWrapper(analyzer='char', column_prefix='BAG',
                       columns_to_use=['STRINGLINE'],
                       desired_output_type='SparseArray',
                       drop_unused_columns=True, drop_used_columns=True,
                       max_df=1.0, max_features=None, min_df=1,
                       ngram_range=(1, 4), regex_match=False, tfidf=False,
                       vocabulary=None)






If a model has another has its parameters, like a ‘BoxCoxTargetTransformer’ or ‘Stacker’… it works the same


[10]:






json_full = "BoxCoxTargetTransformer",{"model":json_des,"ll":0}
json_full








[10]:







('BoxCoxTargetTransformer',
 {'model': ('GraphPipeline',
   {'models': {'encoder': ('NumericalEncoder',
      {'columns_to_use': ['BLOCKNUMBERTOKEN', 'DATETOKEN', 'CURRENCYTOKEN']}),
     'vect': ('CountVectorizerWrapper',
      {'analyzer': 'char',
       'ngram_range': (1, 4),
       'columns_to_use': ['STRINGLINE']}),
     'rf': ('RandomForestClassifier', {'n_estimators': 500})},
    'edges': [('encoder', 'rf'), ('vect', 'rf')]}),
  'll': 0})







[11]:






model = sklearn_model_from_param(json_full)
model








[11]:







BoxCoxTargetTransformer(ll=0,
                        model=GraphPipeline(edges=[('encoder', 'rf'),
                                                   ('vect', 'rf')],
                                            models={'encoder': NumericalEncoder(columns_to_use=['BLOCKNUMBERTOKEN',
                                                                                                'DATETOKEN',
                                                                                                'CURRENCYTOKEN'],
                                                                                desired_output_type='DataFrame',
                                                                                drop_unused_columns=False,
                                                                                drop_used_columns=True,
                                                                                encoding_type='dummy',
                                                                                max_cum_proba=0.95,
                                                                                max_modalities_number=100,
                                                                                max_na_percenta...
                                                                                 random_state=None,
                                                                                 verbose=0,
                                                                                 warm_start=False),
                                                    'vect': CountVectorizerWrapper(analyzer='char',
                                                                                   column_prefix='BAG',
                                                                                   columns_to_use=['STRINGLINE'],
                                                                                   desired_output_type='SparseArray',
                                                                                   drop_unused_columns=True,
                                                                                   drop_used_columns=True,
                                                                                   max_df=1.0,
                                                                                   max_features=None,
                                                                                   min_df=1,
                                                                                   ngram_range=(1,
                                                                                                4),
                                                                                   regex_match=False,
                                                                                   tfidf=False,
                                                                                   vocabulary=None)},
                                            no_concat_nodes=None,
                                            verbose=False))







[12]:






model.model.graphviz








[12]:






[image: ../_images/notebooks_ModelJson_19_0.svg]




[13]:






from aikit.model_definition import DICO_NAME_KLASS







For it to work : the model should be added within DICO_NAME_KLASS


[14]:






DICO_NAME_KLASS








[14]:







registered klasses :
AgglomerativeClusteringWrapper
BoxCoxTargetTransformer
CdfScaler
Char2VecVectorizer
ColumnsSelector
CountVectorizerWrapper
DBSCANWrapper
ExtraTreesClassifier
ExtraTreesRegressor
FeaturesSelectorClassifier
FeaturesSelectorRegressor
GraphPipeline
KMeansTransformer
KMeansWrapper
LGBMClassifier
LGBMRegressor
Lasso
LogisticRegression
NumImputer
NumericalEncoder
OutSamplerTransformer
PCAWrapper
PassThrough
Pipeline
RandomForestClassifier
RandomForestRegressor
Ridge
StackerClassifier
StackerRegressor
TargetEncoderClassifier
TargetEncoderEntropyClassifier
TargetEncoderRegressor
TextDefaultProcessing
TextDigitAnonymizer
TextNltkProcessing
TruncatedSVDWrapper
Word2VecVectorizer






For it to work, each model should be registered
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Auto ML

This notebook will explain the auto-ml capabilities of aikit.

It shows the several things involved. If you just want to run it you should use the automl launcher

Let’s start by loading some small data


[1]:






import warnings
warnings.filterwarnings('ignore')

import pandas as pd

from aikit.datasets.datasets import load_dataset,DatasetEnum
dfX, y, _ ,_ , _ = load_dataset(DatasetEnum.titanic)
dfX.head()








[1]:
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Default Pipeline

This notebook shows how you can use aikit to directly get a default pipeline that you can fit on your data


[1]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)









[2]:






from aikit.ml_machine import get_default_pipeline
model = get_default_pipeline(Xtrain, y_train)
model













Matplotlib won't work












C:\HOMEWARE\Anaconda3-Windows-x86_64\lib\site-packages\gensim\utils.py:1197: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")







[2]:







GraphPipeline(edges=[('ColumnsSelector', 'NumImputer'),
                     ('CountVectorizerWrapper', 'NumImputer'),
                     ('NumericalEncoder', 'NumImputer',
                      'RandomForestClassifier')],
              models={'ColumnsSelector': ColumnsSelector(columns_to_drop=None,
                                                         columns_to_use=['pclass',
                                                                         'age',
                                                                         'sibsp',
                                                                         'parch',
                                                                         'fare',
                                                                         'body'],
                                                         raise_if_shape_differs=True,
                                                         regex_match=False),
                      'CountVectorizerWrapper'...
                      'RandomForestClassifier': RandomForestClassifier(bootstrap=True,
                                                                       class_weight=None,
                                                                       criterion='gini',
                                                                       max_depth=None,
                                                                       max_features='auto',
                                                                       max_leaf_nodes=None,
                                                                       min_impurity_decrease=0.0,
                                                                       min_impurity_split=None,
                                                                       min_samples_leaf=1,
                                                                       min_samples_split=2,
                                                                       min_weight_fraction_leaf=0.0,
                                                                       n_estimators=100,
                                                                       n_jobs=None,
                                                                       oob_score=False,
                                                                       random_state=123,
                                                                       verbose=0,
                                                                       warm_start=False)},
              no_concat_nodes=None, verbose=False)







[3]:






model.graphviz








[3]:






[image: ../_images/notebooks_DefaultPipeline_3_0.svg]




[4]:






model.fit(Xtrain, y_train)








[4]:







GraphPipeline(edges=[('ColumnsSelector', 'NumImputer'),
                     ('CountVectorizerWrapper', 'NumImputer'),
                     ('NumericalEncoder', 'NumImputer',
                      'RandomForestClassifier')],
              models={'ColumnsSelector': ColumnsSelector(columns_to_drop=None,
                                                         columns_to_use=['pclass',
                                                                         'age',
                                                                         'sibsp',
                                                                         'parch',
                                                                         'fare',
                                                                         'body'],
                                                         raise_if_shape_differs=True,
                                                         regex_match=False),
                      'CountVectorizerWrapper'...
                      'RandomForestClassifier': RandomForestClassifier(bootstrap=True,
                                                                       class_weight=None,
                                                                       criterion='gini',
                                                                       max_depth=None,
                                                                       max_features='auto',
                                                                       max_leaf_nodes=None,
                                                                       min_impurity_decrease=0.0,
                                                                       min_impurity_split=None,
                                                                       min_samples_leaf=1,
                                                                       min_samples_split=2,
                                                                       min_weight_fraction_leaf=0.0,
                                                                       n_estimators=100,
                                                                       n_jobs=None,
                                                                       oob_score=False,
                                                                       random_state=123,
                                                                       verbose=0,
                                                                       warm_start=False)},
              no_concat_nodes=None, verbose=False)







[ ]:
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[1]:






%load_ext autoreload
%autoreload 2








[26]:






import warnings
warnings.filterwarnings('ignore') # to remove gensim warning








Auto clustering

This notebook will explain the auto-clustering capabilities of aikit.

It shows the several things involved. If you just want to run it you should use the automl launcher

Custom random search


[3]:






import pandas as pd
from sklearn.datasets import load_iris








[4]:






iris = load_iris()








[5]:






X = iris.data
y = iris.target








[6]:






X = pd.DataFrame(X, columns=iris.feature_names)
X.head()








[6]:
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Choice of columns


[1]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)

from aikit.transformers import NumericalEncoder














C:\HOMEWARE\Anaconda3-Windows-x86_64\lib\site-packages\gensim\utils.py:1197: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")







[2]:






Xtrain








[2]:
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Transformers


[1]:






import warnings
warnings.filterwarnings('ignore')








[2]:






from aikit.datasets.datasets import load_dataset,DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)








[3]:






Xtrain.head(20)








[3]:
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Stacking

This notebook will show you how to stacks model using aikit


Regression with OutSamplerTransformer

Let’s start by creating a simple Regression dataset


[1]:






from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split

X, y = make_regression(n_samples=1000, n_features=30, n_informative=10, n_targets=1, random_state=123)

Xtrain, Xtest, ytrain, ytest = train_test_split(X, y, test_size=0.1, shuffle=True, random_state=123)








[2]:






from sklearn.ensemble import RandomForestRegressor
from lightgbm import LGBMRegressor
from sklearn.linear_model import Ridge

from aikit.pipeline import GraphPipeline
from aikit.models import OutSamplerTransformer

cv = 10

stacking_model = GraphPipeline(models = {
    "rf"   : OutSamplerTransformer(RandomForestRegressor(random_state=123, n_estimators=10) , cv = cv),
    "lgbm" : OutSamplerTransformer(LGBMRegressor(random_state=123, n_estimators=10)         ,  cv = cv),
    "ridge": OutSamplerTransformer(Ridge(random_state=123)     , cv = cv),
    "blender":Ridge()
    }, edges = [("rf","blender"),("lgbm","blender"),("ridge","blender")])


stacking_model.graphviz













Matplotlib won't work












C:\HOMEWARE\Anaconda3-Windows-x86_64\lib\site-packages\gensim\utils.py:1197: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
  warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")







[2]:






[image: ../_images/notebooks_Stacking_3_2.svg]



This model behaves like a regular sklearn regressor.

It can be fitted :


[3]:






stacking_model.fit(Xtrain, ytrain)








[3]:







GraphPipeline(edges=[('rf', 'blender'), ('lgbm', 'blender'),
                     ('ridge', 'blender')],
              models={'blender': Ridge(alpha=1.0, copy_X=True,
                                       fit_intercept=True, max_iter=None,
                                       normalize=False, random_state=None,
                                       solver='auto', tol=0.001),
                      'lgbm': OutSamplerTransformer(columns_prefix=None, cv=10,
                                                    desired_output_type=None,
                                                    model=LGBMRegressor(boosting_type='gbdt',
                                                                        class_weight=...
                                                                              n_jobs=None,
                                                                              oob_score=False,
                                                                              random_state=123,
                                                                              verbose=0,
                                                                              warm_start=False),
                                                  random_state=123),
                      'ridge': OutSamplerTransformer(columns_prefix=None, cv=10,
                                                     desired_output_type=None,
                                                     model=Ridge(alpha=1.0,
                                                                 copy_X=True,
                                                                 fit_intercept=True,
                                                                 max_iter=None,
                                                                 normalize=False,
                                                                 random_state=123,
                                                                 solver='auto',
                                                                 tol=0.001),
                                                     random_state=123)},
              no_concat_nodes=None, verbose=False)






You can predict


[4]:






yhat_test = stacking_model.predict(Xtest)








[5]:






from sklearn.metrics import mean_squared_error
10_000 * mean_squared_error(ytest, yhat_test)








[5]:







9.978737586369565






Let’s describe what goes on during the fit:


	cross_val_predict is called on each of the model => This create out-of-sample predictions for each observation


	the each model is re-fitted on the full data => To be ready when called for a new prediction


	The blender is given the out-of-sample prediction of the 3 models to fit a final model




The ‘OutSamplerTransformer’ object implements the logic to create out-of-sample prediction whereas GraphPipeline act to pass transformation from one node to the next(s).


With that logic you can do more complexe things

Let’s say you have missing value to fill before feeding the data to the models (Remark : this is not the case here).

You can just add a node at the top of the pipeline:


[6]:






from aikit.transformers import NumImputer

stacking_model = GraphPipeline(models = {
    "imp"  : NumImputer(),
    "rf"   : OutSamplerTransformer(RandomForestRegressor(random_state=123, n_estimators=10) , cv = cv),
    "lgbm" : OutSamplerTransformer(LGBMRegressor(random_state=123, n_estimators=10)         ,  cv = cv),
    "ridge": OutSamplerTransformer(Ridge(random_state=123)     , cv = cv),
    "blender":Ridge()
    }, edges = [("imp", "rf","blender"),("imp", "lgbm","blender"),("imp", "ridge","blender")])

stacking_model.graphviz









[6]:






[image: ../_images/notebooks_Stacking_10_0.svg]



Let’s say you want to pass to the blender the predictions of the model along with the original features.

You can just add another edge :


[7]:






from aikit.transformers import NumImputer

stacking_model = GraphPipeline(models = {
    "imp"  : NumImputer(),
    "rf"   : OutSamplerTransformer(RandomForestRegressor(random_state=123, n_estimators=10) , cv = cv),
    "lgbm" : OutSamplerTransformer(LGBMRegressor(random_state=123, n_estimators=10)         ,  cv = cv),
    "ridge": OutSamplerTransformer(Ridge(random_state=123)     , cv = cv),
    "blender":Ridge()
    }, edges = [("imp", "rf","blender"),("imp", "lgbm","blender"),("imp", "ridge","blender"), ("imp", "blender")])

stacking_model.graphviz









[7]:






[image: ../_images/notebooks_Stacking_12_0.svg]








Example on a Classification task


[8]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)
Xtrain.head(10)








[8]:
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GraphPipeline

The GraphPipeline object is an extension of sklearn.pipeline.Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] but the transformers/models can be chained with any directed graph.


	The objects takes as input two arguments:

	
	models : dictionary of models (each key is the name of a given node, and each corresponding value is the transformer corresponding to that node)


	edges  : list of tuples that link the nodes to each other






	The created object will behave like a regular sklearn model :

	
	it can be cloned and thus cross-validated


	it can pickled


	set and get params works


	it can obviously be fitted and returns predictions


	…








See full example here :




	GraphPipeline Notebook








Example:

gpipeline = GraphPipeline(models = {"vect" : CountVectorizerWrapper(analyzer="char",ngram_range=(1,4)),
                                        "svd"  : TruncatedSVDWrapper(n_components=400) ,
                                        "logit" : LogisticRegression(class_weight="balanced")},
                               edges = [("vect","svd","logit")]
                               )






	This is a model on which we do the following steps:

	
	do a Bag of Char CountVectorizer


	apply an SVD on the result


	fit a Logistic Regression on the result








The edges parameters just says that there are edges from “vect” to “svd” to “logit”.
By convention if a tuple is of length more than 2 it is assumed that all consecutive elements forms an edge (same convention as in DOT graph language)

This model could have be built using sklearn Pipeline. If graphviz is installed you can get a nice vizualization of the graph using:

gpipeline.graphviz






[image: graphviz vizualization of a simple pipeline]


Now the aims of the GraphPipeline object is to be able to handle more complexe chaining of transformers.
Let’s assume that you have 2 texts columns in your dataset “Text1”,”Text2” and 2 categorical columns “Cat1”,”Cat2” and that you want to do the following:



	CountVectorizer on your text


	Categorical Encoder on your categories


	merging the 2 encoded variables and give the result to a RandomForestClassifier







You would need to create a GraphPipeline like that:

gpipeline = GraphPipeline(models = {"vect" : CountVectorizerWrapper(analyzer="char",ngram_range=(1,4), columns_to_use=["text1","text2"]),
                                    "cat"  : NumericalEncoder(columns_to_use=["cat1","cat2"]) ,
                                    "rf"   : RandomForestClassifier(n_estimators=100)}  ,
                               edges = [("vect","rf"),("cat","rf")]
                               )





Note that this time, the edges parameters tells that there are 2 edges : “vect” to “rf” and “cat” to “rf”


[image: graphviz vizualization of a merging pipeline]


This particular graph could have been built using a combination of sklearn.pipeline.Pipeline [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] and sklearn.pipeline.FeatureUnion [https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.FeatureUnion.html#sklearn.pipeline.FeatureUnion], however the syntax is easier here.

Let’s take a slightly more complexe exemple:

gpipeline = GraphPipeline(models = {"encoder" : NumericalEncoder(columns_to_use = ["cat1","cat2"]),
                                    "imputer" : NumImputer(),
                                    "vect"    : CountVectorizerWrapper(analyzer="word",columns_to_use=["cat1","cat2"]),
                                    "svd"     : TruncatedSVDWrapper(n_components=50),
                                    "rf"      : RandomForestClassifier(n_estimators=100)
                                        },
                        edges = [("encoder","imputer","rf"),("vect","svd","rf")] )






[image: graphviz vizualization of a more complexe pipeline]



	In that example we have 2 chains of transformers :

	
	one for the text on which we apply a CountVectorizer and then do an SVD


	one for the categorical variable that we encode and then input the missing values








Now let’s take one last example of something that couldn’t be done using FeatureUnion and Pipeline without computing some transformations twice.

Imagine that you want the RandomForestClassifier to have both the CountVectorizer features and the SVD features, using the Graphpipeline you can do the following model::
You can do that by just adding another edge between “vect” and “rf”:

gpipeline = GraphPipeline(models = {"encoder" : NumericalEncoder(columns_to_use = ["cat1","cat2"]),
                                    "imputer" : NumImputer(),
                                    "vect"    : CountVectorizerWrapper(analyzer="word",columns_to_use=["cat1","cat2"]),
                                    "svd"     : TruncatedSVDWrapper(n_components=50),
                                    "rf"      : RandomForestClassifier(n_estimators=100)
                                        },
                        edges = [("encoder","imputer","rf"),("vect","rf"),("vect","svd","rf")] )






[image: graphviz vizualization of a more complexe pipeline]



	A variation of that would be to include a node to select feature after the CountVectorizer, that way you could :

	
	keep the most important text features as is


	retain some of the other information but reduce the dimension via an SVD


	keep the other features


	feed everything to a given model








So code would be:

gpipeline = GraphPipeline(models = {"encoder" : NumericalEncoder(columns_to_use = ["cat1","cat2"]),
                                    "imputer" : NumImputer(),
                                    "vect"    : CountVectorizerWrapper(analyzer="word",columns_to_use=["cat1","cat2"]),
                                    "sel"     : FeaturesSelectorClassifier(n_components = 25),
                                    "svd"     : TruncatedSVDWrapper(n_components=50),
                                    "rf"      : RandomForestClassifier(n_estimators=100)
                                        },
                        edges = [("encoder","imputer","rf"),("vect","sel","rf"),("vect","svd","rf")] )






[image: graphviz vizualization of a more complexe pipeline]



Merging nodes

The GraphPipeline automatically knows how to merge data of different types. For example the output of a CountVectorizer is most of time a sparse matrix whereas the output of an encoder usually is a DataFrame or a numpy array.
This is the case for the pipeline


[image: graphviz vizualization of a merging pipeline]


before applying the RandomForest a concatenation should be made. The GraphPipeline uses the generic concatenation functions aikit.data_structure_helper.generic_hstack() to handle that.

Remark : in some cases you don’t want the model to handle concatenation, for example because you want to treat the two (or more) inputs separately yourself in the following transformer.
In that case you can add specify the argument no_concat_nodes to specify the nodes at which you don’t want the GraphPipeline to concatenate.
In that case the following node will receive a dictionnary of transformed data the keys are the name of the preceding nodes and the values the corresponding transformations.

Remark : the order on which the node appear in the graphviz representation is not necessary the order of the concatenation of the features made within the GraphPipeline.
The order of concatenation is actually fixed by the order of the edges : the first node that appear within the edges will be on the left of the concatenated data.




Exposed methods


	The GraphPipeline exposed the methods that are available in the final node of the estimator (Pipeline is doing exactly the same). For example

	
	if the final estimator has a decision_functions method, the GraphPipeline will be able to call it (applying transformations on each node and then decision_function on the final node)


	if that is not the case an AttributeError will be raised











Features Names

The GraphPipeline also makes it easier to handle features names.
Indeed when using it the names of the features are passed down the pipeline using the “get_feature_names” of each node and whenever possible using the “input_features” argument to tell each node the name of the features in input.
That way each node knows the name of the feature it has as input and can give the names of its features.
Those name are used are columns names whenever a DataFrame is retrieved.

You can also retrieve the features at each node if needed (for Example to look at features importances on the last node). The two methods to do that are:



	get_feature_names_at_node  : retrieve the name of the features at the exit of a given node


	get_input_features_at_node : retrive the name of the features at the entry of a given node (this can be called at the last node to know to which features corresponds which feature importance for example)










Complete Documentation


	
class aikit.pipeline.GraphPipeline(models, edges=None, verbose=False, no_concat_nodes=None)

	sklearn Transformer that act like a pipeline but on a more generic graph structure


	modelsdict

	dictionnary of models, keys = name of models, values = the models



	edgeslist of tuple

	in each tuple each consecutives elements is an edge



	verboseboolean, default = False

	level of verbosity



	no_concat_nodeslist or None, default = None

	if not None contains, the node on that list will be called with a dictionnary of Data : key = parent node and values = data at precedding node
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GraphPipeline getting started

This notebook is here to show a few things that can be done by the package.

It doesn’t means that these are the things you should do on that particular dataset.

Let’s load titanic dataset to test a few things


[1]:






import warnings
warnings.filterwarnings('ignore') # to remove gensim warning








[2]:






from aikit.datasets.datasets import load_dataset, DatasetEnum
Xtrain, y_train, _ ,_ , _ = load_dataset(DatasetEnum.titanic)








[3]:






Xtrain.head(20)








[3]:
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Auto ML Overview



	See Details of Launcher

	Advanced Functionnalities

	Manual Launch





aikit proposes a tool to automatically search among machine learning models and preprocessings to find the best one(s).

To do that the algorithm needs an ‘X’ DataFrame and a target ‘y’ and that is to be predicted. The algorithm starts to guess everything that is needed:



	the type of problem (regression, classification)


	the type of each variable (categorical, text or numerical)


	the models/transformers to use


	the scorer to use


	the type of cross-validation to use


	…







Everything can be overrided by the the user if needed.
(See Auto Ml Advanced functionnalities)

A folder also needs to be set because everything will transit on disk and be saved in that folder.

Once everything is set a job controller should be launched. Its job will be to create new models to try.
Then, one (or more) workers should be launched to actually do the job and test the model.

After a while the result can be seen and a model can be chosen.

The process is more or less the following (see after for detailed)



	the controller creates a random model (see detailed after)


	one worker picks up that model and cross validates it


	the controller picks up the result to help drive the random search


	after a while the result can be aggregated to choose the model







Everything can be driven via a script.

The easiest way to start the auto ml is to create a script like the following one (and save it as ‘automl_launcher.py’ for example)

Example:

from aikit.datasets import load_dataset, DatasetEnum
from aikit.ml_machine import MlMachineLauncher

def loader():
    """ modify this function to load the data

    Returns
    -------
    dfX, y

    Or
    dfX, y, groups

    """
    dfX, y, *_ = load_dataset(DatasetEnum.titanic)
    return dfX, y

def set_configs(launcher):
    """ modify that function to change launcher configuration """

    launcher.job_config.score_base_line = 0.75
    launcher.job_config.allow_approx_cv = True

    return launcher

if __name__ == "__main__":
    launcher = MlMachineLauncher(base_folder = "C:/automl/titanic",
                                 name = "titanic",
                                 loader = loader,
                                 set_configs = set_configs)

    launcher.execute_processed_command_argument()





The only thing to do is to replace the loader function by a function that loads your own data.
Once that is done, just run the following command

python automl_launcher.py run -n 4





It will starts the process using 4 workers (you can change that number if you have more or less processes available).

Here is a diagram that summarize what is going and explained the different functionnalities.
For a complete explanation of all the command please look at the Auto ML Launcher page.


[image: Summary of the auto ml command]


For a detailed explanation about how the auto-ml is working you can go here:



	Auto ML Inner Workings





You can download and adapt the scripts here


	Auto Ml Default (Titanic)


	Auto Ml Advanced (Titanic)
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Auto ML Launcher

To help to launch the ml machine jobs you can use the MlMachineLauncher object.

it :



	contains the configurations of the auto-ml


	has methods to launch a controller, a worker, … (See after)


	has a method to process command line arguments to quickly create a script that can be used to drive the ml-process (See after)







The easiest way is to create a script like the following one.

Example:

from aikit.datasets import load_dataset, DatasetEnum
from aikit.ml_machine import MlMachineLauncher

def loader():
    """ modify this function to load the data

    Returns
    -------
    dfX, y

    Or
    dfX, y, groups

    """
    dfX, y, *_ = load_dataset(DatasetEnum.titanic)
    return dfX, y

def set_configs(launcher):
    """ modify that function to change launcher configuration """

    launcher.job_config.score_base_line = 0.75
    launcher.job_config.allow_approx_cv = True

    return launcher

if __name__ == "__main__":
    launcher = MlMachineLauncher(base_folder = "C:/automl/titanic",
                                 name = "titanic",
                                 loader = loader,
                                 set_configs = set_configs)

    launcher.execute_processed_command_argument()





(in what follows we will assume that this is the content of the “automl_launcher.py” file)

Here is what is going on:


	first import the launcher


	define a loader function : it is better to define a loading function that can be called if needed instead of just loading the data (because you don’t always need the data)


	create a launcher, with a base folder and the loading function




4. (Optional) : you can change a few things in the configurations. Here we set the base line to 75% and tell the auto-ml that it can do approximate cross-validation. (See the ‘advanced functionnalities’ section)
To do that pass a function that change the configuration.
5. Process the command argument to actually start a command

Remarks:



	if no change in the default configurations are needed you can use set_configs = None


	the loading function can also return 3 things : dfX, y and groups (if a group cross-validation is needed)


	don’t forget the ‘if __name__ == “__main__”’ part, since the code uses subprocess it is really needed








	Having created a script like that you can now use the script to drive the auto-ml process :

	
	to start a controller and n workers


	to aggregate the result


	to separately start a controller


	to separately start worker(s)


	fit a specific model


	…









what you need to specify ?


	For the automl to work you need to specify a few things:

	
	a loader function








This function will load your data, it should return a DataFrame with features (dfX), the target (y), and optionnaly the groups (if you want to use a GroupedCV)
It will be called only once during the initialisation phase. So if you’re loading data you don’t need to save it a shared folder accessible by all the worker.
(After it is called, the auto-ml will persist everything needed)



	a base folder : the folder on which the automl will work.







This folder should be accessible by all the workers and the controller.
It will be used to save result, save the queue of jobs, the logs, …


	set_configs function : a function to modify the settings of the automl




You can modify the cv, the base line, the scoring, … (See ml_machine_launcher_advanced for details).


[image: Summary of the auto ml command]





run command

This is the main command, it will start everything that is needed.
To start the whole process, you should use the ‘run’ command, in a command windows you can run:

python automl_launcher.py run






	This is the main command, it will

	
	load the data using the loader


	initialize everything


	modify configuration


	save everything needed to disk


	start one controller in a subprocess


	start one worker








You can also start more than one worker, to do that, the “-n” command should be used:

python automl_launcher.py run -n 4





This will create a total of 4 workers (and also 1 controller), so at the end you’ll have 5 python processes running




manual start


	You can also use this script to start everything manually. That way you can

	
	do the initialization manually


	have one console for the controller


	have separate consoles for workers








To do that you need the same steps as before.




init command

If you only want to initialize everything, you can run the ‘init’ command:

python automl_launcher.py init





This won’t start anything (no worker, no controller), but will load the data, prepare the configuration and apply the change and persist everything to disk.




manual init

alternatively you can do that manually in a notebook or your favorite IDE. That way you can actually see what the default configuration, prepare the data, etc.

Here is the code to do that:

launcher.MlMachineLauncher(base_folder="C:/automl/titanic", loader=loader)
launcher.initialize()
launcher.job_config.base_line = 0.75
launcher.auto_ml_config.columns_informations["Pclass"]["TypeOfVariable"] = "TEXT"

# ... here you can take a look at job_config and auto_ml_config
# ... any other change

launcher.persist()








controller command

If you only want to start a controller, you should use the ‘controller’ command:

python automl_launcher.py controller





This will start one controller (in the main process)




worker command

If you only want to start worker(s) you should use the ‘worker’ command:

python automl_launcher.py worker -n 2





This will start 2 workers (one in main process and one in a subprocess). For it to do anything a controller needs to be started elsewhere.
This command is useful to add new workers to an existing task, or to add new worker on another computer (assuming the controller is running elsewhere).




result command

If you want to launch the aggregation of result, you can use the ‘result’ command:

python automl_launcher.py result





This will trigger the results aggregations and generate the excel result file




stop command

If you want to stop every process, you can use the ‘stop’ command:

python automl_launcher.py stop





It will create the stop file that will trigger the exit of all process listening to that folder




fit command

If you want to fit one or more specific model(s), you can use the ‘fit’ command. You’ll need to specify the job_id(s) to fit:

python automl_launcher.py fit --job_ids 77648ab95306e564c4c230e8469e9470





Or:

python automl_launcher.py fit --job_ids 77648ab95306e564c4c230e8469e9470,469ee473a55a4d1376d3c3186c95f048





To fit more that one model.
The models will be saved within ‘saved_models’ along with their json.




Summary

To start a new experiment, first create the script with the example above then use run command.

If you want to split everything you can use



	launcher.initialize()


	apply modifications


	launcher.persist()


	controller command


	worker command







Whenever you want an aggregation of results : result command
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Auto Ml Advanced functionnalities

The launcher script can be used to specify lots of things in the ml machine. The auto-ml makes lots of choices by default which can be changed.
To change those you need to modify the ‘job_config’ object or the ‘auto_ml_config’ object.

Within the launcher, you can use the ‘set_configs’ function to do just that.

Here is a complete example:

def set_configs(launcher):
    """ this is the function that will set the different configurations """
    # Change the CV here :
    launcher.job_config.cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=123) # specify CV

    # Change the scorer to use :
    launcher.job_config.scoring = ['accuracy', 'log_loss_patched', 'avg_roc_auc', 'f1_macro']

    # Change the main scorer (linked with )
    launcher.job_config.main_scorer = 'accuracy'

    # Change the base line (for the main scorer)
    launcher.job_config.score_base_line = 0.8

    # Allow 'approx cv or not :
    launcher.job_config.allow_approx_cv = False

    # Allow 'block search' or not :
    launcher.job_config.do_blocks_search = True

    # Start with default models or not :
    launcher.job_config.start_with_default = True

    # Change default 'columns block' : use for block search
    launcher.auto_ml_config.columns_block = OrderedDict([
          ('NUM', ['pclass', 'age', 'sibsp', 'parch', 'fare', 'body']),
         ('TEXT', ['name', 'ticket']),
         ('CAT', ['sex', 'cabin', 'embarked', 'boat', 'home_dest'])])

    # Change the list of models/transformers to use :
    launcher.auto_ml_config.models_to_keep = [
                 #('Model', 'LogisticRegression'),
                 ('Model', 'RandomForestClassifier'),
                 #('Model', 'ExtraTreesClassifier'),

                 # Example : keeping only RandomForestClassifer

                 ('FeatureSelection', 'FeaturesSelectorClassifier'),

                 ('TextEncoder', 'CountVectorizerWrapper'),

                 #('TextPreprocessing', 'TextNltkProcessing'),
                 #('TextPreprocessing', 'TextDefaultProcessing'),
                 #('TextPreprocessing', 'TextDigitAnonymizer'),

                 # => Example: removing TextPreprocessing

                 ('CategoryEncoder', 'NumericalEncoder'),
                 ('CategoryEncoder', 'TargetEncoderClassifier'),

                 ('MissingValueImputer', 'NumImputer'),

                 ('DimensionReduction', 'TruncatedSVDWrapper'),
                 ('DimensionReduction', 'PCAWrapper'),

                 ('TextDimensionReduction', 'TruncatedSVDWrapper'),
                 ('DimensionReduction', 'KMeansTransformer'),
                 ('Scaling', 'CdfScaler')
                 ]

    # Specify the type of problem
    launcher.auto_ml_config.type_of_problem = 'CLASSIFICATION'

    # Specify special hyper parameters : Example
    launcher.auto_ml_config.specific_hyper = {
            ('Model', 'RandomForestClassifier') : {"n_estimators":[10,20]}
            }
    # Example : only test n_estimators to be 10 or 20

    return launcher






Job Config Option

The ‘job_config’ object stores information related to the way we will test the models : like the Cross-Validation object to use, the base-line, …


	Cross-Validation




You can change the ‘cv’ to use. Simply change the ‘cv’ attribute.

Remark : if you specify ‘cv = 10’, the type of CV will be guessed (StratifiedKFold, KFold, …)

Remark : you can use a special ‘RandomTrainTestCv’ or ‘IndexTrainTestCv’ object to do only a ‘train/test’ split and not a full cross-validation.


	Scorings




Here you can change the scorers to be used. Simplify specify a list with the name of scorers. You can also directly pass sklearn scorers.


	Main Scorer




This specify the main scorer, it is used to compute the base-line. It can also be used to ‘guide’ the auto-ml.


	Approximate CV




If you want to allow that or not. The idea of ‘approximate cv’ is to gain time by by-passing the CV of some transformers : if a transformers doesn’t depend on the target you can reasonably skip cross-validation without having much leakage.


	Do Block Search




If True, the auto-ml will do special jobs where the model is fixed, the preprocessing pipeline is the default one, but it tries to remove some of the block of columns. It also tries to use only one block.
Those jobs helps figure out what block of features are important or not.


	Starts with default




If True, the auto-ml starts by ‘default’ models and transformers before doing the full bayesian random search.




Auto Ml Config

The ‘auto_ml_config’ object stores the information related to the data, the problem, …


	Columns Blocks




Using that attribute you can change the blocks of columns, by default the blocks corresponds to the type of variable (Numerical, Categories and Text) but you can specify what you want.
Those blocks will be used for the ‘block search’ jobs.


	Models to Keep




Here you can filter the models/transformers to test.

Remark : you need to keep required preprocessing steps. For example, if you have text columns you need to keep at least one text encoder.


	Type of Problem




You can chage the type of problem. This is needed if the guessing was wrong.


	Specific Hyper Parameters




You can change the hyper parameters used, simply pass a dictionnary with keys being the models to change, and values the new hyper-parameters.
The new hyper-parameters can either be a dict (as in the example above) or an object of the HyperCrossProduct class.




Usage of groups

Sometime your data falls into different groups. Sklearn allow you to pass those information to the cross-validation object to make sure the folds respect the groups. Aikit also allow you to use those groups for custom scorer.
To use groups in the auto-ml the ‘loader’ function needs to returns three things instead of two : ‘dfX, y, groups’

You can then specify a special CV or a special scorer that uses the groups.


	Getting Started


	GraphPipeline
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Auto ML Manual Launch


Simple Launch

Here are the steps to launch a test.
For simplicity you can also use an MlMachineLauncher object (see _ml_machine_launcher)

Load a dataset ‘dfX’ and its target ‘y’ and decide a ‘name’ for the experiment. Then create an AutoMlConfig object:

from aikit.ml_machine import AutoMlConfig, JobConfig
auto_ml_config = AutoMlConfig(dfX=dfX, y=y, name=name)
auto_ml_config.guess_everything()





This object will contain all the configurations of the problem.
Then create a JobConfig object:

job_config = JobConfig()
job_config.guess_cv(auto_ml_config=auto_ml_config, n_splits=10)
job_config.guess_scoring(auto_ml_config=auto_ml_config)





The data (dfX and y) can be deleted from the AutoMlConfig after everything is guessed to save memory:

auto_ml_config.dfX = None
auto_ml_config.y = None





If you have an idea of a base line score you can set it:

job_config.score_base_line = 0.95





Create a DataPersister object (for now only a FolderDataPersister object is available but other persisters using database should be possible):

from aikit.ml_machine import FolderDataPersister
base_folder = "automl_folder_experiment_1"
data_persister = FolderDataPersister(base_folder=base_folder)





Now everything is ready, a JobController can be created and started (this controller can use a AutoMlModelGuider to help drive the random search):

from aikit.ml_machine import AutoMlResultReader, AutoMlModelGuider, MlJobManager, MlJobRunner
result_reader = AutoMlResultReader(data_persister)

auto_ml_guider = AutoMlModelGuider(result_reader=result_reader,
                                   job_config=job_config,
                                   metric_transformation="default",
                                   avg_metric=True)

job_controller = MlJobManager(auto_ml_config=auto_ml_config,
                            job_config=job_config,
                            auto_ml_guider=auto_ml_guider,
                            data_persister=data_persister)





Same thing one (or more workers) can be created:

job_runner = MlJobRunner(dfX=dfX,
                   y=y,
                   auto_ml_config=auto_ml_config,
                   job_config=job_config,
                   data_persister=data_persister)





To start the controller just do:

job_controller.run()





To start the worker just do:

job_runner.run()






	Remark :

	
	the runner and the worker(s) should be started seperately (for example the controller in a special thread, or in a special process).


	the controller doesn’t need the data (dfX and y) and they can be deletted from the AutoMlConfig after everything is guessed











Result Aggregation

After a while (whenever you want actually) you can aggregate the results and see them.
The most simple way to do that is to aggregate everything into an Excel file.
Create an AutoMlResultReader:

from aikit.ml_machine import AutoMlResultReader, FolderDataPersister

base_folder = "automl_folder_experiment_1"
data_persister = FolderDataPersister(base_folder = base_folder)

result_reader = AutoMlResultReader(data_persister)





Then retrieve everything:

   df_results = result_reader.load_all_results()
   df_params  = result_reader.load_all_params()
   df_errors  = result_reader.load_all_errors()

* df_results is a DataFrame with all the results (cv scores)
* df_params is a DataFrame with all the parameters of each models
* df_error is a DataFrame with all the errors that arises when fitting the models





Everything is linked by the ‘job_id’ column and can be merged:

df_merged_result = pd.merge(df_params, df_results, how="inner", on="job_id")
df_merged_error  = pd.merge(df_params, df_errors , how="inner", on="job_id")





And saved into an Excel file:

df_merged_result.to_excel(base_folder + "/result.xlsx", index=False)








Result File


[image: automl result file]


Here are the parts of the file:



	job_id : idea of the current model (this is id is used everywhere)


	hasblock_** columns : indicate whether or not a given block of column were used


	steps columns indicating which transformer/model were used for each step (Example : “CategoricalEncoder”:”NumericalEncoder”)


	hyper-parameter columns : indicate the hyperparameters for each model/transformers


	test_** : scoring metrics on testing data (ie: out of fold)


	train_** : scoring metrics on training data (ie: in fold)


	time, time_score : time to fit and score each model


	nb : number of fold (not always max because sometime we don’t do the full crossvalidation if performance are not good)








[image: automl result file]
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Auto ML Inner Workings

Here is a more detailed explanation about what the Ml Machine is doing.


Steps

Each transformation are grouped in steps. There can be several steps needed for each DataFrame, and the needed steps depend on the type of problem/variable.
Some steps are optional some are needed.

Example of such steps:



	TextPreprocessing (optional) this steps has all the text preprocessing transformer


	TextEncoder : (needed) this step encodes the text into numerical value (Example using CountVectorizer or Word2Vec)


	MissingValueImputer (needed if some variable have missing values)


	CategorieEncoder (needed if some variables are categorical)


	…


	Model (needed) : last step consisting of the prediction model







see complete list with aikit.enums.StepCategories

The Ml Machine will randomly draw one model per step and merge them into a complex processing pipeline.
Optional steps are sometimes drawn and sometime not.

(The transformers that are drawn are the one in the ml machine registry : Model Register)




First Rounds


	Before randomly selected pipelines, a first round of models are tested using:

	
	default parameters


	without all the optional steps








Usually those pipelines should perform relatively well and gives a good idea about what work and what doesn’t.




Next Rounds

Once that is done, random rounds are started. For those, random models are drawn:



	for each step, draw a random transformation (or ignore the step if it is optional)


	for each model draw random hyper-parameters


	if block of variable were setted, randomly draw a subset of those blocks


	merge everythihg into a complexe graph







That model is then send to the worker to be cross-validated.




Stopping Threshold

For each given model the worker aims to do a full cross-validation. However the cross-validation can be stopped after the first fold if the result are too low (bellow a threshold fixed by the controller).


	That threshold is computed using :

	
	the base line score if it exists


	a quantile on already done result








(See aikit.cross_validation.cross_validation() which is used to compute the cross-validation)




Guided Job

After a few models, with a given random probability, the controller will start to create Guided Jobs. Those jobs are not random anymore but uses BayesianOptimization to try to guess a model that will perform correctly.

Concretely a meta model is fitted to try to predict performance based on hyper-paramters and transformers/models choices. And instead we use that meta model to predict wheither or not a candidate model will perform or not.




Random Model Generator

The random model generator can be used outside of the Ml Machine:

from aikit.ml_machine.ml_machine import RandomModelGenerator
generator = RandomModelGenerator( auto_ml_config = auto_ml_config)

Graph, all_models_params, block_to_use = generator.draw_random_graph()






	The generator returns three things:

	
	Graph : networkx graph of the model


	all_models_params : dictionnary with all the hyper-parameters of all the transformers/models


	block_to_use : the block of columns to use








With this 3 objects the json of a model can be created:

from aikit.ml_machine.model_graph import convert_graph_to_code
model_json_code = convert_graph_to_code(Graph, all_models_params





And then a working model can be created:

from aikit.model_definition import sklearn_model_from_param
skmodel = aikit.model_definition.sklearn_model_from_param(model_json_code)
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Transformer

aikit offers some transformers to help process the data. Here is a brief description of them.

Some of those transformers are just relatively thin wrapper around what exists in sklearn, some are existing techniques packaged as transformers and some things built from scratch.

aikit transformers are built using a Model Wrapper

There is a more detailed explanation about the aikit.transformers.model_wrapper.ModelWrapper class.
It will explain what the wrapper is doing and how to wrap new models. It will also explain some common functionnalities of all the transformers in aikit.


Wrapper Goal

The aim of the wrapper is to provide a generic class to handle most of the redondant operations that we might want to apply in a transformer.
In particular it aims at making regular ‘sklearn like’ model more generic and more ‘user friendly’.

Here are a few things the wrapper offer to aikit transformers :



	automatic conversion of input/output into a given format (which is useful when chaining models and some on them accepts DataFrame, some don’t, …)


	verification of type, shape of new data


	shape conversion for model that only accept ‘1-dimensional’ input


	automatic splits and concatenation of result for models that only work one column at a time (See : CountVectorizerWrapper)


	generation of features_names and usage of those names when the output is a DataFrame


	delay the creation of underlying model until the fit() is called. This allow to customize hyper-parameters based on the data (Ex : n_components can be a percentage of the number of columns given in input).


	automatic or manual selection the columns the transformers is supposed to work on.







Let’s take sklearn sklearn.feature_extraction.text.CountVectorizer [https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer] as an example.
The transformer has the logic implemented however it can sometimes be a little difficult to use :



	if your data has more than one text column you need more than once CountVectorizer and you need to concatened the result







Indeed CountVectorizer work only on 1 dimensional input (corresponding to a text Serie or a text list)



	if your data is relatively small you might want to retrieve a regular pandas DataFrame and not a scipy.sparse matrix which might not work with your following steps


	you might want to have feature_names that not only correspond to the ‘word/char’ but also tells from which column it comes from. Example of such column name : ‘text1_BAG_dog’


	you might want to tell the CountVectorizer to work on specific columns (so that you don’t have to take care of manually splitting your data)







As a consequence it also make the creation of a “sklearn compliant” model (ie : a model that works well within the sklearn infrastructure easy : clone, set_params, hyper-parameters search, …)

Wrapping the model makes the creation of complexe pipleline like the in GraphPipeline a lot easier.


	To sum up the aim of the wrapper is to separate :

	
	the logic of the transformer


	the mechanical data transformation, checks, … needed to make the transformer robust and easy to use











Selection of the columns

The transformers present in aikit are able to select the columns they work on via an hyper-parameter called ‘columns_to_use’.

For example:


from aikit.transformers import CountVectorizerWrapper
vectorizer = CountVectorizerWrapper(columns_to_use=[“text1”,”text2”])




the preceding vectorizer will encode “text1” and “text2” using bag-of-word.


	The parameter ‘columns_to_use’ can be of several type :

	
	list of strings  : list of columns by name (assuming a DataFrame input)


	list of integers : list of columns by position (either a numpy array or a DataFrame


	special string “all” : means all the columns are used


	DataTypes.CAT  : use aikit detection of columns type to keep only categorical columns


	DataTypes.TEXT : use aikit detection of columns type to keep only textual columns


	DataTypes.NUM  : use aikit detection of columns type to keep only numerical columns


	other string like ‘object’ : use pandas.select_dtype to filter based on type of column








Remark : when a list of string is used the ‘use_regex’ attribute can be set to true. In that case the ‘columns_to_use’ are regexes and the columns retrieved are the one that match one of the regexes.

Here are a few examples:

Encoding only one or two columns by name:

from aikit.transformers import CountVectorizerWrapper
vectorizer = CountVectorizerWrapper(columns_to_use=["text1","text2"])





Encoding only ‘TEXT’ columns:

from aikit.transformers import CountVectorizerWrapper
from aikit.enums import DataTypes
vectorizer = CountVectorizerWrapper(columns_to_use=DataTypes.TEXT)





Encoding only ‘object’ columns:

from aikit.transformers import CountVectorizerWrapper
from aikit.enums import DataTypes
vectorizer = CountVectorizerWrapper(columns_to_use="object")








Drop Unused Columns

aikit transformer can also decided what you do with the columns you didn’t encode.
By default most transformer drop those columns. That way at the end of the transformer you retrieve only the encoded columns.


	The behavior is setted by the parameter ‘drop_used_columns’:

	
	True : means you have only the encoded ‘columns_to_use’ result at the end


	False : means you have the encoded ‘columns_to_use’ + the other columns (un-touched by the transformer)








This can make it easier to transformed part of the data.

Remark : the only transformers that have ‘drop_used_columns = False’ as default are categorical encoder. That way they automatically encoded  the categorical columns but keep the numerical column un-touched. Which means you can plug that at the begginning of your pipeline.




Drop Used Columns

You can also decided if you want to keep the ‘columns_to_use’ in their original format (pre-encoding).
To do that you need to specify ‘drop_used_columns=False’.
If you do that you’ll have both encoded and non-encoded value after the transformers. This can be usefull sometimes.

For example, let’s say that you want to do an SVD but you also want to keep the original columns (so the SVD is not reducing the dimension but adding new compositie features).
You can do it like that:

from aikit.transformers import TruncatedSVDWrapper
svd = TruncatedSVDWrapper(columns_to_use="all", n_components=5, drop_used_columns=False)








You can wrap your own model

You can use aikit wrapper for your own model, this is useful if you want to code a new transformer but you don’t want to think about all the details to make it robust.

See :



	How to Wrap a transformer

	What append during the fit








Other Transformers

For a full Description of aikit Transformers go there :



	All Transformers
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How to Wrap a transformer


	To wrap a new model you should

	
	Create a new class that inherit from ModelWrapper


	In the __init__ of that class specify the rules of the wrapper (see just after)


	create a _get_model method to specify the underlying transformers





	
class aikit.transformers.model_wrapper.ModelWrapper(columns_to_use, work_on_one_column_only, all_columns_at_once, accepted_input_types, column_prefix, desired_output_type, must_transform_to_get_features_name, dont_change_columns, drop_used_columns=True, drop_unused_columns=True, regex_match=False)

	This is a generic class to help wrapping existing transformer and make them more robust


	Parameters

	
	columns_to_use (None or list of string) – this parameters will allow the wrapped transformer to select its columns


	work_on_one_column_only (boolean) – if True tells that the underlying transformer works with 1 dimensinal data (pd.Serie for example)


	all_columns_at_once (boolean) – if False it tells that the underlying transformer only know how to work one a singular column
This is the case for sklearn CountVectorizer for example.
If that is the case the wrapped model will work one several column has well (a clone of the underlying model will be create for each column)


	accepted_input_types (list of DataType) – tells what is accepted by the underlying transformer, a conversion will be made if the input type is not among that list
if None nothing is done


	column_prefix (str or None) – if we want the features_names to be prefixed by something like ‘SVD_’ or ‘BAG_’ (for TruncatedSVD or CountVectorizer)


	desired_output_type (None or DataType) – specify the desired output type of transformer, a conversion will be made if necesary


	must_transform_to_get_features_name (boolean) – specify if the transformer should transform its data in order to get its features names.
Ideally the underlying transformer should implement a  ‘get_features_names’ method but sometimes the features names are only retrieve from the column of the transformed DataFrame


	dont_change_columns (boolean) – indicate that the transformer doesn’t change the column (for example a StandardScaler)
if that is the case you know that the resulting feature are the input feature


	drop_used_columns (boolean, default=True) – what to do with the ORIGINAL columns that were transformed.
If False, will keep them in the result (un-transformed)
If True, only the transformed columns are in the result


	drop_unused_columns (boolean, default=True) – what to do with the column that were not used.
if False, will drop them
if True, will keep them in the result


	regex_match (boolean, default = False) – if True will use a regex to match columns otherwise exact match














	A few notes:

	
	must_transform_to_get_features_name and dont_change_columns are here to help the wrapped transformers to implement a correct ‘get_feature_names’


	the wrapped model has a ‘model’ attribute that retrieves the underlying transformer(s)


	the wrapped model will generate a NotFittedError error when called without being fit first (this behavior is not consistent across all transformers)








Here is an example of how to wrap sklearn CountVectorizer:

class CountVectorizerWrapper(ModelWrapper):
    """ wrapper around sklearn CountVectorizer with additionnal capabilities

     * can select its columns to keep/drop
     * work on more than one columns
     * can return a DataFrame
     * can add a prefix to the name of columns

    """
    def __init__(self,
                 columns_to_use = "all",
                 analyzer = "word",
                 max_df = 1.0,
                 min_df = 1,
                 ngram_range = 1,
                 max_features = None,
                 columns_to_use = None,
                 regex_match    = False,
                 desired_output_type = DataTypes.SparseArray
                 ):

        self.analyzer = analyzer
        self.max_df = max_df
        self.min_df = min_df
        self.ngram_range = ngram_range
        self.columns_to_use = columns_to_use
        self.regex_match    = regex_match
        self.desired_output_type = desired_output_type

        super(CountVectorizerWrapper,self).__init__(
            columns_to_use = columns_to_use,
            regex_match    = regex_match,

            work_on_one_column_only = True,
            all_columns_at_once = False,
            accepted_input_types = (DataTypes.DataFrame,DataTypes.NumpyArray),
            column_prefix = "BAG",
            desired_output_type = desired_output_type,
            must_transform_to_get_features_name = False,
            dont_change_columns = False)


    def _get_model(self,X,y = None):

        if not isinstance(self.ngram_range,(tuple,list)):
            ngram_range = (1,self.ngram_range)
        else:
            ngram_range = self.ngram_range

        ngram_range = tuple(ngram_range)

        return CountVectorizer(analyzer = self.analyzer,
                               max_df = self.max_df,
                               min_df = self.min_df,
                               ngram_range = ngram_range)





And here is an example of how to wrap TruncatedSVD to make it work with DataFrame and create columns features:

class TruncatedSVDWrapper(ModelWrapper):
    """ wrapper around sklearn TruncatedSVD

    * can select its columns to keep/drop
    * work on more than one columns
    * can return a DataFrame
    * can add a prefix to the name of columns

    n_components can be a float, if that is the case it is considered to be a percentage of the total number of columns

    """
    def __init__(self,
                 n_components = 2,
                 columns_to_use = "all",
                 regex_match  = False
                 ):
        self.n_components = n_components
        self.columns_to_use = columns_to_use
        self.regex_match    = regex_match

        super(TruncatedSVDWrapper,self).__init__(
            columns_to_use = columns_to_use,
            regex_match    = regex_match,

            work_on_one_column_only = False,
            all_columns_at_once = True,
            accepted_input_types = None,
            column_prefix = "SVD",
            desired_output_type = DataTypes.DataFrame,
            must_transform_to_get_features_name = True,
            dont_change_columns = False)


    def _get_model(self,X,y = None):

        nbcolumns = _nbcols(X)
        n_components = int_n_components(nbcolumns, self.n_components)

        return TruncatedSVD(n_components = n_components)








What append during the fit

To help understand a little more what goes on, here is a brief summary the fit method



	if ‘columns_to_use’ is set, creation and fit of a aikit.transformers.model_wrapper.ColumnsSelector to subset the column


	type and shape of input are stored


	input is converted if it is not among the list of accepted input types


	input is converted to be 1 or 2 dimensions (also depending on what is accepted by the underlying transformer)


	underlying transformer is created (using ‘_get_model’) and fitted


	logic is applied to try to figure out the features names
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All Transformers

Here is a list of some of aikit transformers


Text Transformer


TextDigitAnonymizer



	
class aikit.transformers.text.TextDigitAnonymizer(concat=False)

	Text transformer to anonymize digits.











TextNltkProcessing

This is another text pre-processing transformers that does classical text transformations.



	
class aikit.transformers.text.TextNltkProcessing(lower=True, digit_anonymize=True, digit_character='#', remove_non_words=True, remove_stopwords=True, stem=True, concat=False)

	Text tr